Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement.
نویسندگان
چکیده
Recently, the topographic patterning of surfaces by lithography and nanoimprinting has emerged as a new and powerful tool for producing single structural domains of liquid crystals and other soft materials. Here the use of surface topography is extended to the organization of liquid crystals of bent-core molecules, soft materials that, on the one hand, exhibit a rich, exciting, and intensely studied array of novel phases, but that, on the other hand, have proved very difficult to align. Among the most notorious in this regard are the polarization splay modulated (B7) phases, in which the symmetry-required preference for ferroelectric polarization to be locally bouquet-like or "splayed" is expressed. Filling space with splay of a single sign requires defects and in the B7 splay is accommodated in the form of periodic splay stripes spaced by defects and coupled to smectic layer undulations. Upon cooling from the isotropic phase this structure grows via a first order transition in the form of an exotic array of twisted filaments and focal conic defects that are influenced very little by classic alignment methods. By contrast, growth under conditions of confinement in rectangular topographic channels is found to produce completely new growth morphology, generating highly ordered periodic layering patterns. The resulting macroscopic order will be of great use in further exploration of the physical properties of bent-core phases and offers a route for application of difficult-to-align soft materials as are encountered in organic electronic and optical applications.
منابع مشابه
Polarization modulation instability in liquid crystals with spontaneous chiral symmetry breaking.
We present a theoretical model which describes the polarization-modulated and layer-undulated structure of the B7 phase and gives the phase transition from the synclinic ferroelectric smectic-C(S)P(F) phase to the B7 phase as observed experimentally. The system is driven into the modulated phase due to the coupling between the polarization splay and the tilt of the molecules with respect to the...
متن کاملPolarization-modulated smectic liquid crystal phases.
Any polar-ordered material with a spatially uniform polarization field is internally frustrated: The symmetry-required local preference for polarization is to be nonuniform, i.e., to be locally bouquet-like or "splayed." However, it is impossible to achieve splay of a preferred sign everywhere in space unless appropriate defects are introduced into the field. Typically, in materials like ferroe...
متن کاملElectroclinic effect and modulated phases in smectic liquid crystals.
We explore the possibility that the unusually large electroclinic effect observed in the smectic-A phase of a ferroelectric liquid crystal arises from the presence of an ordered array of disclination lines and walls in a smectic-C* phase. If the spacing of these defects is in the subvisible range, this modulated smectic-C* phase would be similar macroscopically to a smectic-A phase. The applica...
متن کاملPattern-stabilized decorated polar liquid-crystal fibers.
Geometric frustration gives rise to new fundamental phenomena and is known to yield the formation of exotic states of matter, such as incommensurate crystals, modulated liquid-crystalline phases, and phases stabilized by defects. In this Letter, we present a detailed study of polar structure of freely suspended fluid filaments in a polarization modulated liquid-crystal phase. We show that a per...
متن کاملPolar Smectic Films
We report on a new experimental procedure for forming and studying polar smectic liquid-crystal films. A free-standing smectic film is put in contact with a liquid drop, so that the film has one liquid-crystal/air interface and one liquid-crystal/liquid interface. This polar environment results in changes in the orientational order parameter textures observed in the film, including a boojum tex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 50 شماره
صفحات -
تاریخ انتشار 2010